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ABSTRACT

Small non-axisymmetric perturbations of poloidally diverted tokamaks create edge stochastic

magnetic field lines that connect to material surfaces such as those in the divertors. Separatrix

structure calculations show that the distribution of stochastic field lines on the vessel walls is closely

related to the topology of homoclinic tangles formed in the perturbed system. Since these tangles

prescribe how the stochastic fields are organized, they are of significant practical interest in tokamak

experiments. Experimental measurements of heat and particle distributions on plasma facing surfaces

sometimes show split peak patterns that are consistent with the presence of stochasticity and

homoclinic tangles. These split peaks are often observed during locked modes and other types of edge

instabilities. They are also observed when perturbation fields from magnetohydrodynamic control

coils are pulsed during a plasma discharge. Numerical modeling of the perturbation field from these

control coils shows that the homoclinic tangle produced by a coil pulse is not always large enough to

produce the splitting patterns observed. Nevertheless, there is a clear correlation between the coil

pulses and the appearance of the split profiles. These results suggest the presence of the plasma

amplification mechanism that enhances the size of the non-resonant homoclinic tangles.
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1.  INTRODUCTION

The magnetic separatrix of a poloidally diverted tokamak is commonly envisioned as a 2D

axisymmetric boundary that divides magnetic field line trajectories of the closed inner, confined

plasma, domain from the outer scrape-off layer plasma region where field lines intersect divertor

target plates within relatively short distances. In reality, the magnetic separatrix in poloidally diverted

tokamaks is a relatively fragile structure that is easily split into a pair of intersecting invariant

manifolds by small non-axisymmetric magnetic perturbations. Such perturbations are known to be

present in all practical toroidal confinement systems such as tokamaks and stellarators due to

unintentional misalignments of external coils (i.e., field-errors), ensemble or intrinsic topological

noise effects (i.e., from random tolerance build ups, unbalanced thermal, mechanical and

electromagnetic forces and the relaxation of materials in all the coils that make up the confinement

system with age), non-axisymmetric control coils [e.g., correction, resistive wall mode or other

magnetohydrodynamic (MHD) coils] and from internal MHD modes or non-axisymmetric current

filaments driven by plasma potentials. This type of splitting is a generic property of perturbed

nonlinear dynamical systems with hyperbolic fixed points [1,2] (referred to as x-points in the tokamak

literature). Since perturbed vacuum magnetic field lines in toroidal plasma confinement devices

represent a differential system that is described at an elementary level by the theory of near-integrable

conservative Hamiltonian dynamics, we expect to find that the existence of complex topologies

characterizing the state of the system is not uncommon. In Section 2 we outline the basic theory of

Hamiltonian field line theory in tokamaks and in Section 3 we present calculations of homoclinic

tangles found in the perturbed equilibrium field of the DIII–D tokamak using a sophisticated field line

mapping code. Section 4 summarizes the experimental measurements made in DIII–D and other

tokamaks that are representative of signatures expected to be produced by homoclinic tangles and in

Section 5 we summarize the results and conclusions.
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2.  BASIC HAMILTONIAN DESCRIPTION OF MAGNETIC FIELD LINES IN
POLOIDALLY DIVERTED TOKAMAKS

The simplest analytic construction of a poloidally diverted tokamak equilibrium is obtained using a

two or three wire model with axisymmetric circular symmetry about the major axis. Here, one wire

simulates the plasma current while the others represents the current in the divertor coils. Examples of

such a models are discussed by Pomphery and Reiman [3] and by Abdullaev and Finken [4].

Recently, a more realistic model, developed by Evans, Moyer and Monat [5], has been used to study

stochastic magnetic field line flux loss from the pedestal region of poloidally diverted plasmas as a

function of the equilibrium shape and edge safety factor profile. In this model the unperturbed

axisymmetric magnetic equilibrium is first calculated using a Grad-Shafranov solver known as the

EFIT code [6] where surfaces of constant poloidal magnetic flux ψ  are calculated by adjusting the

toroidal plasma current density profile while conserving the total plasma current and the safety factor

[ q d d( ) /Φ Φ= ψ  defined below by equation (5) where Φ is the toroidal magnetic flux] on axis. The

equilibrium calculation is constrained by measurements of the poloidal magnetic field outside the

plasma and is required to satisfy an MHD force balance condition that is consistent with the calculated

toroidal current density, plasma pressure and poloidal current profile. An example of such an

equilibrium reconstruction in the DIII–D [7] tokamak is given in Fig. 1 which shows closed contours

of constant ψ  (forming toroidal surfaces) inside the unperturbed equilibrium separatrix and an open

ψ  contour outside the separatrix. With this representation, ψ  defines a monotonic radial-like variable

and the poloidal angle θ  defines an angular location on ψ  at any toroidal angle φ. 

ψ
θ

Tokamak Vacuum
    Vessel Wall

x0
Wu(x0)

Ws(x0)

Fig. 1.  Poloidal cross-section of the DIII–D

tokamak showing the solid vessel wall and contours

of ψ  (flux surfaces).

Fig. 2.  The unperturbed separatrix due to ×0  is

made up of an unstable manifold WU ( )×0

covered by a stable W s( )×0 .
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The equilibrium separatrix is composed of a stable W s ( )×0  and an unstable WU ( )×0  manifold

associated with the hyperbolic fixed point ×0 shown in Fig. 2. It should be recalled that (un)stable

invariant manifolds of a nonlinear system are divided into two sets representing the generalized

eigenspaces associated with a hyperbolic fixed point or x-point.  The eigenvalues associated with a

hyperbolic fixed point ×0 are λs , the stable eigenvalue, satisfying | |λs <1 and λu , the unstable

eigenvalue, satisfying | |λu >1.  The eigenvalues define the eigenvectors of the stable manifold

W s ( )×0  and the unstable manifold WU ( )×0  respectively.  Thus, as shown in Fig. 2, solution

trajectories approach ×0 along the stable manifold W s ( )×0  and move away from ×0 along the

unstable manifold WU ( )×0 .  Here, a section of W s ( )×0  has been removed to show WU ( )×0  since

these manifolds overlay each other in the absence of non-axisymmetric magnetic perturbations. As

discussed in [8], magnetic field line trajectories passing through the poloidal plane shown in Figs. 1

and 2 asymptotically approach ×0 along the (un)stable manifold as φ (decreases)increases. Using
r r
B A B e B e B er r= ∇ × = + +ˆ ˆ ˆθ θ φ φ we may express the magnetic field in terms of toroidal Φ and poloidal

ψ  magnetic flux functions using:
r
B = ∇ × ∇ − ∇ × ∇Φ θ ψ φ   . (1)

Combining   d d d BΦ Φ, , , ,θ φ θ φ( ) = • ∇ ∇ ∇( )
r

 with equation (1) we have:
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where we see that equations (2) and (3) reduced respectively to:

d

d

d

d

Φ
φ

ψ
θ

= − (4)

and

d

d

d

d

θ
φ

ψ=
Φ

(5)

Associating ψ θ φ( , , )Φ  with a Hamiltonian H ( , , )Φ θ φ  we see that equations (4) and (5) describe

magnetic field line trajectories on toroidal flux surfaces. Thus, we identify field line trajectories in

toroidal plasmas with a conservative Hamiltonian dynamical system where the toroidal angle φ serves

as a time-like variable of the dynamics. For unperturbed axisymmetric cases H H( , )Φ θ = 0 . Assuming

typical tokamak plasma current profiles, the field lines form helical trajectories with a monotonically

decreasing pitch angle compared to the equatorial plane as Φ increases from the magnetic axis to the

separatrix. This changing magnetic field pitch angle, when averaged over a flux surface, is referred to

as the safety factor q( )Φ  and is defined as the rate of change in toroidal magnetic flux Φ with respect

to the poloidal magnetic flux ψ , q d d( ) /Φ Φ= ψ . Thus, as seen from equation (5) the change in the

poloidal angle dθ  of a field line decreases with increasing q( )Φ  for constant steps in the toroidal
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angle dφ. This is a consequence of radial shear in the magnetic field and results in a differential twist

of the field lines from one flux surface to the next.

A magnetic field line integration code, referred to as the TRIP3D code [5], is used to calculate 3-

space field line trajectories in poloidally diverted tokamaks such as DIII–D. The code numerically

integrates field line trajectories prescribed by equations (4) and (5) where the components associated

with the axisymmetric part of the Hamiltonian H0  are calculated directly from an EFIT equilibrium

solution using the second term in equation (1) for the poloidal magnetic field Bθ  and the EFIT F ( )ψ
function [ F R BT( )ψ = ] where R  is the major radius of the plasma equilibrium and BT  is the toroidal

magnetic field]. Here, F ( )ψ  accounts for both the poloidal currents from external coils and poloidal

part of the plasma current. This part of the magnetic field represents the combined axisymmetric

vacuum/plasma Grad-Shafranov equilibrium which is required to accurately model shaped, poloidally

diverted, plasmas with self-consistent radial plasma pressure and current density profiles. Non-

axisymmetric perturbation fields enter the Hamiltonian in the following form:

H H Hi j i ji j

n mΦ Φ, , , ,, ,, ,

,θ φ ε θ φ( ) = + ( )=∑0 11
(6)

where εi j,  is the amplitude of the i j,  Fourier modes (with m  being the poloidal mode number and n

the toroidal mode number) summed over all perturbation sources since there are numerous sources of

perturbations in tokamak environments. The TRIP3D code calculates vacuum magnetic field line

trajectories due to all the perturbation sources at any ψ θ φ( , , )Φ  in the plasma domain (including open

field lines that intersect solid material surfaces) using a realistic geometric representation of the source

and an algorithm based on the Biot-Savart magnetic induction law. For the studies discussed here the

TRIP3D code is used to construct a numerical twist map of the field line intersections with a Poincaré

surface. This code is referred to as TRIP3D_MAP. Using TRIP3D_MAP field line trajectories that pass

through a Poincaré surface, such as the poloidal surfaces shown in Figs. 1 and 2, field lines are

mapped back to the surface by advancing φ through an integer number N  of 2π  steps. Thus, N  is

the iteration index of a Poincaré plot that shows position of a field line trajectory or group of

trajectories as they pass through a Poincaré surface of interest.   
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3.  CALCULATIONS OF INVARIANT MANIFOLDS AND
HOMOCLINIC TANGLES IN TOKAMAKS

Invariant manifolds associated with a hyperbolic fixed point of the TRIP3D_MAP, such as ×0 in

Fig. 2, are calculated by constructing the (un)stable eigenvectors 
r
e u s( ),  associated with a fixed point ×

and populating a line segment directed along 
r
e u s( ),  with a set of evenly distributed points. Then

WU ( )×  is approximated by mapping the points distributed along the 
r
eu  direction on to a Poincaré sur-

face using N  successive forward iterations of the TRIP3D_MAP while the stable manifold associated

with × is calculated by applying N  inverse iterations of the map to the points distributed along the 
r
eu

direction. The (un)stable manifolds are represented on the Poincaré surface by connecting the result-

ing points with solid curves. An example of such a calculation is shown in Fig. 3(a) where the

poloidal Poincaré surface has been cut at θ = 0  and unfolded. In addition, the radial extent in ΦN

covers only the outer part of the plasma in order to better resolve small spatial structures associated

with the invariant manifolds (solid curves) and to better visualize magnetic field line trajectories as

they pass through the Poincaré surface (small solid dots). This calculation was done with a circular

flux surface version of TRIP3D_MAP referred to as TRIP_MAP [5] and the non-axisymmetric perturbations

used here are due to small (~2–9 mm) random shifts of all the external tokamak coils. These types of

perturbations are referred to as ensemble or intrinsic topological noise effects [9] that are associated

with random shifts due to engineering design tolerances in the coil assemblies as well as non-ideal

effects such as unbalanced thermal and electromagnetic forces that occur during the operation of the

machine. Such perturbations are always present to some degree in complex magnetic machines such

0.78

0.73

0.68

0.63

0.58

θ (deg)
140100 180 220 260

m,n = 2,1

xo Wu(x1)

Ws(x1)

Ws(x0)

Wu(x0)

x1

Φ

1.00

0.75

N Φ
N

0.50

θ (deg)
0 100 200 300

(a)
m,n = 2,1m,n = 1,1

(b)

Fig. 3.  (a) Poincaré section showing (un)stable invariant manifolds (solid lines) associated with three sets of
resonant magnetic island chains. The solid dots are field line trajectories that have been mapped to the
Poincaré section using TRIP_MAP, (b) an expanded view of the invariant manifolds associated with hyperbolic
points of the m n, ,= 2 1 island chain.
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as a tokamak and are particularly difficult to measure or to systematically quantify. Simulations of

such effects demonstrate that they can be as significant as field-errors due to multi-millimeter

misplacements of individual coils [9]. The detailed structure of the (un)stable manifolds associated

with the two hyperbolic fixed points, ×0  and ×1, of the m n, ,= 2 1 island chain ( m  and n are the

poloidal and toroidal mode numbers of the island chains), shown in Fig. 3(a), are given in Fig. 3(b).

Here, the (un)stable manifolds W u s( ) ( )×0  associated with ×0 oscillate wildly as they approach ×1.

Both W s ( )×1  and W u ( )×1  display similar behaviors as they approach ×0. Such oscillations are a

generic feature of resonant invariant manifolds surrounding magnetic islands in tokamaks and have

been calculated using TRIP3D_MAP in DIII–D for equilibria perturbed by a set of correction coils [10]

used to inhibit the locking of core MHD modes to measured field-error. Intersections of the stable and

unstable manifolds from individual hyperbolic fixed points define lobes within a structure referred to

as homoclinic tangles [1] and these lobes can overlap near the hyperbolic points as shown in Fig. 3(b).

This overlapping of lobes defined by a stable manifold with lobes defined by an unstable manifold

causes stochastic mixing of the field lines near the hyperbolic fixed points of the resonant islands. It is

important to note that stable manifolds may not intersect other stable manifolds and unstable

manifolds may not intersect other unstable manifolds since this would result in solutions of equations

(4) and (5) that are not unique.

As the amplitude of the perturbation is increased in TRIP_MAP, for the case shown in Fig. 3, the

resonant homoclinic tangles associated with the m n, ,= 2 1 and m n, ,= 3 1 islands intersect and field

lines are exchanged between neighboring island chains. The trajectories of the field lines involved in

this inter-island exchange are quite complex as can be seen in Fig. 4. This process of magnetic flux

1.000

Φ

0.875

0.750

0.625

0.500

θ (deg)
0 50 100 150 200 250 300 350

m,n = 2,1

x0

Ws(x0)

Wu(x1)

x1

(a) (b)

m,n = 2,1

m,n =3,1 m,n =3,1

Fig. 4.  (a) A stable manifold associated with the ×0  hyperbolic point of the m n, ,= 2 1 island shown in
Fig. 3(a) intersects the unstable manifold of the m n, ,= 3 1 island with an increase in the perturbation
amplitude in TRIP_MAP and (b) conceptualization of field line mixing between neighboring islands such as
those shown in (a). The solid dots represent the position of a field line that is exchanged between islands
through the intersection of a stable lobe in one island and an unstable lobe of the neighboring island as the
map is iterated.
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exchange through the lobes of homoclinic tangles is the mechanism that leads to the onset of global

magnetic stochasticity and the radial transport of field lines in tokamaks. In circular tokamaks, i.e.,

those without an unperturbed equilibrium separatrix, stochastic field lines are transported to solid

surfaces such as the vacuum vessel walls through intersections of interior island resonant homoclinic

tangles with tangles surrounding islands near the plasma boundary. Stochastic magnetic flux transport

due to resonant tangle intersections between magnetic islands in the edge plasma of a circular

tokamak has recently been studied by a group in Brazil [11] and has been found to produce complex

magnetic footprints on the vacuum vessel walls.

In poloidally diverted tokamaks, magnetic flux transport to solid surfaces such as divertor target

plates involves the interaction of both resonant tangles surrounding interior islands and non-resonant

homoclinic tangles that form on the equilibrium separatrix when non-axisymmetric magnetic

perturbations are present in the system. While resonant island and non-resonant separatrix tangles

both involve a splitting of the separatrices into stable and unstable manifolds, magnetic island

separatrix splitting is produced by helical perturbations (with m n,  poloidal and toroidal mode

numbers) that are resonant on mode rational surfaces q d d( ) /Φ Φ= ψ  = m n/  while non-resonant

equilibrium separatrix tangles result from a linear superposition of amplitudes and phases defined by

all the non-axisymmetric perturbations of the system. This is a consequence of the fact that hyperbolic

fixed points associated with the resonant island tangles are helical in nature while fixed points

associated with an equilibrium separatrix are strictly axisymmetric and thus form non-resonant

tangles. Numerical modeling, comparing the stochastic flux loss in circular and diverted cases, has

demonstrated that the width of the flux loss layer is significantly broader at low perturbation

amplitudes in diverted plasmas [5]. Calculation of the splitting threshold in DIII–D have shown that

perturbation fields of 0.8 G (approximately the magnitude of the Earth’s magnetic field and a factor of

~30 below the magnitude of the measured field-errors in DIII–D) produce tangles with centimeter

scale lobes surrounding equilibrium hyperbolic fixed points in DIII–D [10]. The details of the

equilibrium separatrix splitting are rather sensitive to the number of axisymmetric hyperbolic points

(e.g., one for single null poloidally diverted plasmas and two for double null plasmas although

additional hyperbolic points can be introduced in machine designs with more divertor coils), the radial

and vertical positions of the hyperbolic points (referred to as the triangularity and vertical gap

dimensions), the up-down symmetry of the hyperbolic points in double null plasmas and a variety of

other flux surface shape parameters.

The effects of variations in the flux surface shape parameters on the topology of the perturbed

equilibrium separatrix tangles has been studied using TRIP3D_MAP in DIII–D. It was found that double

null plasmas demonstrate particularly complex sequences of tangle bifurcations as the up-down

symmetry of the hyperbolic fixed points is varied over a relatively small range using a parameter

referred to as d Rsep  [8]. Plasmas with upper and lower hyperbolic fixed points equally spaced above

and below a horizontal plane defined by the magnetic axis of the plasma have d Rsep = 0 , meaning

that the unperturbed outer separatricies associated with these fixed points overlay each other when

intersecting the horizontal magnetic axis plane. In this situation the (un)stable manifolds associated
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with the lower hyperbolic point oscillate wildly as they approach the upper hyperbolic point and the

manifolds associated with the upper hyperbolic point oscillate as they approach the lower hyperbolic

point. This results in an up-down symmetric pair of tangles with lobes that have finger-like structures

extending out across both the inner and outer open flux surface region (i.e., referred to as the scrape-

off layer) of the upper and lower divertors. Relatively small changes in the d Rsep  parameter result in

a dramatic bifurcation of the tangles and the finger-like structures they produce in the divertors. An

example of the tangle topology calculated in TRIP3D_MAP with  d Rsep  = –0.008 m and an n =1

perturbation field is due only to a 10 kA-turn current in the error-field correction coil (the DIII–D

C–coil [5]) is shown in Fig. 5. Here we see a relatively large oscillation in the WU ( )×0  manifold in

the outer scrape-off layer region of the upper divertor. Several broad lobes of the tangle formed by

WU ( )×0  and  W s ( )×0  penetrate the horizontal plane at Z  = 1.10 m and a series of thinner lobes “pile

up” and stretch out toward the upper divertor target plate located at an elevation of 1.35 m. There are

an infinite number of these thin lobes that intersect the divertor target plate. These lobes create a

hyperfine structure of intersections across a small region of the target plate near the location of the

unperturbed the strike point. A similar but somewhat more complex structure exists in the lower

divertor for this case. Here we see that the W s ( )×0  and W s ( )×1  manifolds shadow each other (since

they are not allowed to intersect) as they approach the lower hyperbolic fixed point. The manifolds

form a double bounded tangle with WU ( )×0  that adds a higher order component to the hyperfine

structure of intersections across the outer strike point region of the lower divertor target plate. Since

the manifolds defining the lobes shown in Fig. 5 intersect manifolds that are associated with resonant

island hyperbolic points deeper inside the plasma, escape pathways are formed that result in the

stochastic transport of field lines radially outward into the protruding finger-like structures. Thus, if

viewed normal to the Poincaré plane the tangles will look like filaments filled with hot plasma

streaming out along the stochastic field lines from relatively deep inside the plasma. To estimate the

radial extent over which the field line trajectories inside these scrape-off layer filaments move, a set of

initial field line starting points were selected in the tip of a WU ( )×0  lobe that penetrates the upper

divertor target plate shown in Fig. 5. With these initial conditions and the same parameters as those

used for the calculations shown in Fig. 5, TRIP3D_MAP was iterated backwards over three N = 8

iterations and the positions of the field lines were plotted on the Poincaré section for each set of eight

iterations. Many of the field lines randomly crossed the outer pedestal region and several reached the

top of the pedestal. Base on these results it is not unreasonable to expect that field lines from the

region near or inside q = 2, with relatively short lengths, may connect (“short out”) the divertor targets

to the hot core plasma when magnetic perturbations from all the sources found in DIII–D (e.g., field-

errors, intrinsic topological noise, and MHD fields) are included in this calculation.

A key feature of these separatrix tangles is their footprint on solid surfaces such as the upper and

lower divertor target plates. The toroidal structure of these footprints on the upper divertor target has

been studied for the tangles shown in Fig. 5 [10]. Similar footprints have been found using simplified

two or three wire models [3,4]. An example of such a footprint calculated with TRIP3D_MAP is shown

in Fig. 6. Here a horizontal plane located at Z  = 1.10 m as shown in Fig. 5 is used to image the

toroidal outline of the tangle as it penetrates the plane. This particular plane is selected to provide a
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Fig. 5.  Poloidal cross-section of the DIII–D toka-
mak showing the solid vessel wall and homoclinic
tangles formed by the splitting of invariant
manifolds associated with each of the axisymmetric
hyperbolic fixed points in a relatively well balanced
double null diverted plasma.

Fig. 6.  Toroidal pattern made by WU ( )×0  in
Fig. 5 when projected on the Z =1 1.  m plane. The
upper baffle radius on the projection plane is
indicated and the unperturbed outer separatrix
strike point at the Z =1 35.  m upper divertor solid
surface is indicated as r * = 0.327 m.

quantitative estimate of the extent of the spatial coverage by the tangle lobes at a point where a

tangential camera may see such structures in the scrape-off layer and to highlight the fact that tangles

can produce toroidally asymmetric “hot spots” on objects that protrude into the scrape-off layer. We

see a well defined spiral on the image plane with several distinct radial lobes at some toroidal angles.

We also note that the outer edge of the spiral tip touches the upper baffle near φ π=  rad (180 deg).

Infrared cameras in DIII–D sometimes observe hot spots on this baffle particularly when the plasma

current is run in a direction opposite to that of the neutral beam injection during Quiescent H–modes

or when large MHD modes are excited in the plasma. The full 3D topology of a tangle similar to the

one shown in figures 5 and 6 is given in Fig. 7. Here, the spiraling filament-like tangle has an n =1

structure which defined by the magnetic perturbation from the DIII–D error-field correction coil. It

should be noted that higher n perturbations produce higher n spiral-like footprints on the divertor

targets [4] and that a change in the toroidal phase of the perturbation rotates these spirals around in

toroidal angle with the phase of the perturbation. If more than one perturbation source is present the

shape of the spiral has a toroidal variation that depends on the linear superposition of the amplitudes

and phases of all the perturbation. Thus, a rotating mode such as a neoclassical tearing mode or a
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quasi-stationary locked mode produces a time varying modulation of the toroidal structure of this

footprint. These facts will be useful to keep in mind below as we discuss the experimental

observations of these footprints in the divertors.

Fig. 7. A view of the topology of a homoclinic
tangle such as the one shown in Figs. 5 and 6. The
lobes of the tangle formed by the stable and
unstable manifolds are imaged on the toroidal
surface defined by the unperturbed equilibrium
separatrix. The spiral bands connect to form a
continuous a helical filament-like structure with a
corkscrew like topology wrapped around the
torus. The helical “corkscrew-like” bands are the
images of the stable (light) and unstable (dark)
manifolds on the separatrix surface.
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4.  EXPERIMENTAL OBSERVATIONS

Measurements of toroidal heat flux asymmetries in the DIII–D divertors have demonstrated that

features such multipeaked radial profiles are not uncommon in many plasma discharges. Such features

are particularly large during so-called locked modes in DIII–D but they are also present in a variety of

other discharges. The first toroidally and radially resolved measurements of these heat flux

asymmetries showed that they are sometimes made up of two peaks separated radially by ~5 cm as

seen by an infrared camera at φ = 60 deg and simultaneously by the same two peaks but with an

additional peak of approximately the same amplitude located ~15 cm radially outward from the first

peak as seen by an infrared camera at φ = 165 deg [12]. Comparing these heat flux profiles to the

toroidal image of the homoclinic tangle shown in Fig. 6 above we can easily associate the double peak

heat flux structure at φ = 60 deg with the radial profile of the tangle along the x  axis between y  =

0.33 m and y  = 0.5 m (at φ π= /2 ) while the triply peaked structure observed at φ = 165 deg

qualitatively agrees with the spiral tangle distribution in the third quadrant at a 15 deg angle below the

y  axis (φ = 195 deg) from the unperturbed equilibrium separatrix out to the radius of the baffle.

Similar flux measurements during MHD events in VH–modes have shown that these split peak

distributions are sensitive to perturbations from internal MHD modes and that they change rapidly as

the mode amplitude and phase evolves [12]. High time resolution measurements of heat flux

distributions on the divertor target plates in the ASDEX–U tokamak have recently shown that the

impulsive energy losses due to edge localized modes (ELMs) also produce profiles with multiple

peaks in the radial direction during the ELM crash [13]. In addition, the ASDEX–U data shows that

these striped peaks produced by ELMs have an inclination angle with respect to the toroidal magnetic

field that suggests they are part of a larger spiral structure. The first measurements of toroidal

asymmetries due to ELMs were made using a toroidal tile current array in DIII–D [12]. The

measurements showed that large non-axisymmetric currents are driven in the scrape-off layer during

an ELM crash which can presumably influence the topology of resonant islands and equilibrium

separatrix tangles. Similar but significantly larger non-axisymmetric scrape-off layer currents

(sometimes referred to as halo currents) are also measure during disruptions in DIII–D with the

toroidal tile current array [12] and recent measurements with this diagnostic have shown that these

non-axisymmetric currents are often present during and correlated with core MHD activity in many

discharges or with edge harmonic oscillations that are often observed during DIII–D QH–modes [14].

Experiments using an internal magnetic perturbation coil (referred to as the I–coil) have been quite

successful in suppressing large ELMs in DIII–D [15]. Figure 8 shows how the I–coil pulse, starting a

t  = 3000 ms, affects the peak in the lower divertor heat flux near the outer strike point compared to a

discharge without the I–coil pulse. The upper trace in Fig. 8(b) shows the time evolution of the peak

in the amplitude of the radial heat flux profile (as indicated by the peak in the lower divertor curve

near the outer strike point in Fig. 9) and the lower curve in Fig. 8(b) shows the change in this peak

during the magnetic perturbation pulse from the I–coil starting at t  = 3000 ms as indicated in
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Fig. 8.  (a) Plasma current, injected neutral beam
power and I–coil magnetic perturbation current
pulse in DIII–D ELM suppression discharge
115467 and (b) peak heat flux in the lower divertor
(as shown in Fig. 10) with (lower) and without
(upper) the magnetic perturbation field.

Fig. 9.  DIII–D equilibrium shape used during the
ELM suppression experiment in discharge 115467
(as shown in Fig. 8). The view used by the
infrared TV camera at φ = 60 deg is shown along
with a conceptual illustration of the amplitude of
the heat flux distribution on the divertor.

Fig. 8(a). Figure 9 shows the view of the infrared (IR) TV camera and indicates that the total field due

to the I–coil current pulse is 46 G at the midplane near the outer unperturbed equilibrium separatrix.

Using data from this discharge we plot the radial distribution of the heat flux as a function of time in

Fig. 10(a). Here, we see that the peak located near the outer divertor strike point at R  = 134 cm splits

into a pair of peaks with roughly half the amplitude and separated by ~5 cm. We also note that when

the magnetic perturbation pulse from the I–coil ends at t  = 4400 ms the original peak recovers and the

secondary peak diminishes in amplitude. Figure 10(b) shows the radial profile of the heat flux plotted

in Fig. 10(a) at t  = 2900 ms, before the perturbation pulse from the I–coil, and during the perturbation

pulse at t  = 3300 ms. Looking at Fig. 10(a) again, we see that there is a continuous change in the

amplitude of the two heat flux peaks yet the perturbation field from the I–coil is constant. We interpret

this to be evidence of a non-stationary component in the total perturbation field that modulates the

structure of the tangle footprint on the divertor target plate. Interestingly, we know that the plasma

rotation is strongly damped during this time and that rapidly rotating core MHD modes are slowing

down to the point that perturbations from their magnetic fields could be visible on the relatively slow

time scale of this particular measurement. These MHD mode are observed to slow down with the

plasma and stop rotating for a shot time then spin up again slowly later in the I-coil pulse.  Since we

do not expect perturbations from field-errors or intrinsic topological noise to change on this time scale

and no other sources of external magnetic perturbations were being used during this discharge (i.e.,
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Fig. 10.  (a) Evolution of the radial heat flux profile in the lower divertor during an ELM suppression
discharge where the magnetic perturbation from the DIII–D I–coil is pulsed starting at t  = 3000 ms. This data
was obtained during the discharge shown in Fig. 8 using the infrared camera view shown in Fig. 9 and (b) two
radial heat flux profiles taken from (a) at 2900 ms (solid curve), before the magnetic perturbation pulse and at
3300 ms (dashed curve) during the perturbation pulse.

the error-field correction coil which is typically used on most DIII–D discharges to prevent locked

modes due to field-errors) it appears that these heat flux modulations must be due to the slowing down

of the internal neoclassical tearing modes (the MHD modes mentioned above) or currents generated in

the edge of the plasma such as those measured with the toroidal tile current array.

It should be possible, in future experiments, to simultaneously measure both the edge current and

the magnetic field from core MHD modes and to use these fields in TRIP3D_MAP to calculate the

structure of the tangles during the slow evolution phase when modulations are observed on the heat

flux profiles. Fast imaging cameras, such as the one used on the NSTX machine (a spherical tokamak)

[16], looking at divertor deuterium ionization ( Dα ) emissions also provides important information on

the edge magnetic topology of the plasma during ELMs and MHD events and we anticipate the

addition of a similar diagnostic for these studies in the near future. Measurements of Dα  emissions in

the lower divertor of DIII–D with a slow CID camera have resulted in a series of interesting images

during the ELM suppression experiments discussed above. As can be seen in Fig. 11, these images

also show a characteristic splitting that is well correlated with the magnetic perturbation pulse from

the I–coil. The qualitative features of these split divertor target emissions are in agreement with the

calculated structure of the homoclinic lobes shown in Fig. 5 but the amplitude of the lobe found using

only the perturbation from the I–coil pulse is too small to explain the degree of splitting observed.

This suggests that either another perturbation source is contributing to the splitting or the plasma

amplifies the applied perturbation by driving currents in the scrape-off layer. The total perturbation

field from the I–coil with a current of 4.4 kA is approximately the same size as that due to the

measured field-errors in DIII–D so it is conceivable that the splitting from tangles due to field-errors
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Fig. 11.  (a) Visible camera view of the lower divertor in DIII–D using a Dα  filter. This image was taken
prior ( t  = 2990 ms) to the I–coil pulse in discharge 115467 and show a single emission line along the divertor
target at the location of the outer strike point and (b) the same view as in (a) but taken 60 ms later during the
I–coil pulse show a splitting of the emission along the outer strike point tat agrees with the heat flux splitting
shown in figure 10.

alone are not resolvable by the camera prior to the I–coil pulse. On the other hand, when the I–coil is

applied the magnitude of the perturbation approximately doubles. Calculations of perturbations such

as this in TRIP3D_MAP indicate that these could be large enough to produce the splitting observed in the

heat flux and divertor emissions but additional calculations are needed to see if the details of the

tangles are consistent with both measurements when the amplitudes and phases of the field-errors are

combined with the I–coil perturbation field.  In some cases currents in the scrape-off layer produce

non-axisymmetric magnetic perturbations that are equivalent to or larger than those from the external

correction or control coils. Halo currents driven during the current quench phase of most disruptions

are an example of the largest scrape-off layer currents measured with the toroidal tile current array in

DIII–D. Individual toroidal filaments can exceed several kilo amperes in some types of halo currents.

Currents are also measured during ELMs [12,14] and can often exceed 100 amperes per filament.

These currents undergo complex space and time variations as the ELM instability evolves. They

typically involve multiple filaments that appear to be rotating or undergoing a rapid change in

amplitude. An example of the behavior of these currents is given in Fig. 12(a) where we have

overlayed the currents measured by six toroidally distributed elements of the toroidal tile current array

on a single plot. Here we see a series of large rapid current spikes associated with the ELMs which

lead up to the onset of a locked mode starting at t  = 1431 ms. At t  = 1440–1455 ms the locked mode

slowly rotates and locks solidly for about 15 ms at φ = 240 deg as shown in Fig. 12(b). This slowly

rotating phase of the lock mode is referred to as the quasi-stationary phase of the mode (i.e., a QSM).

The toroidal phase angle of the locked mode and QSM is shown in Fig. 12(b) and its amplitude in

Fig. 12(c) where we note that the integration time constant of this detector is too slow to see the fast

ELM perturbations earlier in the discharge.
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Fig. 12. (a) Slow toroidal tile current array signals from six sensors near the outer strike point in DIII–D
discharge 103175. The signals from toroidal angles φ = 180, 135, 255, 165, 200, and 300 degs are shown in
sequence from top to bottom 1475 ms as indicated by the vertical arrow and (b) toroidal phase angle of the
locked mode (QSM) from a set of midplane saddle loops with a relatively long integration time constant and
(c) the amplitude of the locked mode from the midplane saddle loop.

Slowly rotating QSMs with relatively long lifetimes are often observed in DIII–D and provide an

interesting perturbation source for studying homoclinic tangle structure. An example of a slowly

rotating QMS is shown in Fig. 13 where the phase and amplitude of the mode is plotted over a period

of 1500 ms. We see that the mode rotates quite slowly, becoming almost stationary near φ = 240 deg

where the largest components of the field-errors are found in DIII–D and then it rotates rapidly around

the machine one full toroidal revolution once it slips past φ = 240 deg. The amplitude modulation is

well correlated with the change in toroidal phase growing slowly as the mode hesitates at φ = 240 deg

and dropping rapidly as the mode slips past this preferred phase angle. Most of the QSMs observed in

DIII–D display a similar behavior. Figure 14 shows the radial position of the locked mode detector

used to study these QSMs and the view used by the IR camera located at φ = 165 deg. We use this

camera to follow the evolution of the heat flux profiles in the lower divertor during the evolution of

the QSM shown in Fig. 13. In Fig. 15 we indicate four times between 3200 and 3260 ms during which

the IR camera data was collected. The radial profiles of the heat flux calculated with the IR camera

data is shown in Fig. 16. We also show the toroidal angle of the outward pointing magnetic field at the

horizontal midplane of DIII–D due to the slowly rotating QSM in the upper right-hand corner of
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Fig. 14.  DIII–D equilibrium shape during the
QSM seen in discharge 73582 showing the view
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Fig. 16.  Changes in the lower divertor heat flux profiles for
the times shown in Fig. 15 and the toroidal angle of the QSM
is shown in the upper right-hand corner of the figure.
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Fig. 16. Here, we see that the mode moves from φ = 120 deg to φ = 210 deg between the first two 20

ms time slices and then dwells near φ = 240 deg for the next three time slices. These data show that

the peak-to-peak separation of the double peak heat flux structure increases from ~8 to ~12 cm as the

QSM perturbation field rotates past the view of the IR camera. This is consistent with a rotation of the

spiral footprint due to a homoclinic tangle (such as the one shown in Fig. 6) in the clockwise direction

which is the same direction the QSM rotates in this discharge. The measured increase in the separation

of the two peaks is also consistent with the n =1 spiral structure of the footprint shown in Fig. 6 and

with the toroidal mode number of QSMs in DIII–D which are m = 2  modes that are located on the

q = 2 resonant surface of the plasma. The subsequent evolution of this mode over the next 60 ms is

shown in Fig. 17 and then from 3380 to 3440 ms in Fig. 18. We see in Fig. 17 that the double peak

structure of the footprint transitions abruptly to a single peak as the QSM rotates between φ = 330 deg

at 3300 ms and φ = 30 deg at 3320 ms. This behavior is qualitatively in very good agreement with the

tip of the spiral (as shown in Fig. 5) produced by an n =1 tangle rotating past the view of the IR

camera during this time interval. As the mode continues to rotate the double peak structure returns but

there are some qualitative differences during the second toroidal revolution as seen in Fig. 18. These

difference may be due to changes in the amplitude of the mode on the q = 2 surface or in the

distribution of the scrape-off layer currents being driven through the non-resonant tangles extending

out into the scrape-off layer. Additional data and modeling with TRIP3D_MAP is needed to better

interpret these differences in the footprint structure.
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Fig. 17.  Changes in the lower divertor heat flux profiles between 3260 and
3320 ms in discharge 73582 and the toroidal angle of the QSM is shown in
the upper right-hand corner of the figure.
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5.  SUMMARY AND CONCLUSIONS

Poloidally diverted plasmas are particularly sensitive to the onset of a class of elementary
topological instabilities know as homoclinic tangles that result from the Hamiltonian nature of the

vacuum magnetic fields in such systems. These tangles are known to be associated with Hamiltonian
chaos in many classical systems [17] and thus are of interest in real physical systems since proof of

their existence has important implications for a broad range of physics application. Such instabilities
do not require field line tearing and reconnection but simply represent a reconfiguration of the vacuum

magnetic topology due to resonant and non-resonant interactions of non-axisymmetric perturbations
from either external sources, internal MHD modes or current filaments that form on open field lines

connecting to solid surfaces such as divertor target plates or vacuum vessel walls. The topological
web of tangles produced by intersections of resonant island tangles with non-resonant separatrix

tangles in poloidally diverted tokamaks is typically very complex and quite sensitive to a variety of
control parameters such as the shape of the flux surfaces (e.g., triangularity, squareness, relative up-

down balance of the equilibrium hyperbolic fixed points etc.). Nevertheless, it has been shown in this
paper that a number of experimental measurements made in the DIII–D tokamak agree qualitatively

very well with the topology of the tangles calculated with a realistic twist map (TRIP3D_MAP) that
accurately models the axisymmetric plasma equilibrium and the full geometry of the external

magnetic perturbations due to field-errors, correction coils and control coils.

It is found that non-resonant homoclinic tangles form filament-like structures that protrude out into

the scrape-off layer. These filaments, when imaged with cameras looking at deuterium or impurity
line emissions, can produce bands of enhanced emission in the divertor region where higher densities

of cold neutral atoms are concentrated and will look like fingers reaching radially outward from the
region of the unperturbed equilibrium separatrix. Since separatrix tangles are connected to hot plasma

in the core, through intersections with resonant island tangles, they will be continuously filled with hot
plasma that is transported into the tangle footprints and deposited on solid surfaces such as divertor

target plates with a pattern that is characteristic of the tangle topology. Examples of these patterns in
DIII–D have been presented in this paper for a case in which the tangles are driven by a current pulse

in an externals coil (Figs. 10 and 11) and for a case where an internal mode on the q = 2 surface (a
Quasi-stationary mode) was present. In both cases the measured pattern is in good qualitative

agreement with the calculated structure of the divertor target plate footprint due to the non-resonant
tangle. Other examples of heat flux patterns, during ELMs in ASDEX–U [13], with very similar

structures to those present here also appear to agree with the basic structure of the tangles although
these may require perturbations with higher toroidal mode numbers than those discussed above.

Additionally, we note that higher n emission filaments have recently been observed on the MAST
tokamak [18] that fit the tangle topology relatively well if one assumes that higher n magnetic

perturbations are involved in the ELMs responsible for these emission filaments. Similar
measurements have recently been made on NSTX showing a clear n =1 filament protruding into the

scrape-off layer during smaller ELM events in this tokamaks [16]. These filaments look very similar
to the tangle structures calculated in this paper such as the one shown in Fig. 7.
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